Two-dimensional polynomial residue number system

نویسندگان

  • Ming-Chwen Yang
  • Ja-Ling Wu
چکیده

The polynomial residue number system (PRNS) has been considered as a useful tool for digital signal processing (DSP) since it can support parallel, carry-free, high speed arithmetic with minimum multiplication count provided that an appropriate modular ring is chosen. In this paper, the properties of two-dimensional (2-D) PRNS are investigated in detail. It is shown that in the 2-D PRNS system, the theoretical lower bound for multiplication count of polynomial products can be achieved in some carefully chosen ring. Application of the proposed 2-D PRNS for computing 2-D circular convolution, which involves intensive multiplication operations, is also presented. Zusammenfassung Das Polynom-Restklassen-Zahlensystem (PRNS) wird als niitzliches Werkzeug zur digitalen Signalverarbeitung angesehen, da es fibertragfreie, schnelle Parallelarithmetik mit kleinstm6glicher Multiplikationszahl unterstiitzen kann, wenn ein geeigneter Modulo-Ring gewfihlt wird. In diesem Beitrag werden die Eigenschaften des zweidimensionalen (2-D-) PRNS im Einzelnen untersucht. Es wird gezeigt, dab im 2-D-PRNS die theoretische Untergrenze der Multiplikationszahl ffir Polynomprodukte in einem sorgf/iltig gew~hlten Ring erreichbar ist. Die Anwendung des vorgeschlagenen 2-D-PRNS zur Berechnung der 2-D-Zirkularfaltung, welche einen hohen Multiplikationsaufwand beinhaltet, wird ebenfalls vorgestellt. R~ume Le syst6me fi num6ro de r6sidu polynomial (PRNS) a 6t6 consid6r6 comme un outils utile pour le traitement des signaux digitaux (DSP) car il supporte l'arithm~tique tr6s rapide, parall~le et sans retenue avec un compteur de multiplication minimum lorsqu'un cercle modulaire appropri6 est choisi. Dans cet article, les propriet+s des PRNS fi deux dimensions (2-D) sont pr6sent6es en d6tails. I1 est montr6 que dans le syst6me PRNS 2-D, la limite th+orique la plus basse pour le compteur de multiplication de produits polynomiaux peut ~tre obtenue pour quelques cercles soigneusement choisis. Une application du 2-D PRNS propos6e pour le calcul de la convolution circulaire 2-D, laquelle implique d'intensives op6rations de multiplication, est 6galement pr6sent6.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

Low Complexity Converter for the Moduli Set {2^n+1,2^n-1,2^n} in Two-Part Residue Number System

Residue Number System is a kind of numerical systems that uses the remainder of division in several different moduli. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers will increase the speed of the arithmetic operations in this system. However, the main factor that affects performance of system is hardware complexity of reverse converter. Reverse co...

متن کامل

Overflow Detection in Residue Number System, Moduli Set {2n-1,2n,2n+1}

Residue Number System (RNS) is a non-weighted number system for integer number arithmetic, which is based on the residues of a number to a certain set of numbers called module set. The main characteristics and advantage of residue number system is reducing carry propagation in calculations. The elimination of carry propagation leads to the possibility of maximizing parallel processing and reduc...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

Using both Binary and Residue Representations for Achieving Fast Converters in RNS

In this paper, a new method is introduced for improving the efficiency of the Residue Number System, which uses both binary and residue representations in order to represent a number. A residue number system uses the remainder of the division in several different modules. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers greatly increase the speed of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 40  شماره 

صفحات  -

تاریخ انتشار 1994